Construction

LESSON 4

BUILDING CONSTRUCTION

SESSION 2

Building Construction

Objectives

- The Student Shall:
 - -List 5 fire spread concerns associated with Heavy Timber Construction
 - Identify 2 structural concerns related to Heavy Timber Construction

Building Construction

Objectives

- The Student Shall:
 - Identify 5 types of wood frame construction
 - List 8 fire spread concerns associated with all wood frame structures
 - Identify the inherent structural concerns in each of the 5 types of wood frame construction

Objectives

- The Student Shall:
 - I dentify and explain the strategic considerations related to fires involving truss construction
 - Give an example of hybrid construction and the potential impact on fire department operations

Building Construction

Objectives

- The Student Shall:
 - Define both vertical and horizontal collapse zones
 - List 3 types of wood frame wall collapse
 - Identify 3 types of masonry wall collapse
 - Identify 4 types of wood floor collapse

Building Construction

Heavy Timber Construction

- NFPA Class IV-- Mill Construction – Exterior walls = brick / masonry
 - Interior structural members made of
 - substantial wood • Columns at least 8" x 8"
 - Joists at least 6" x 10"
 - 3" side-laid planking floors covered by 1"
 - top plank
 - Combustible roof (Heavy Timber Truss)

Heavy Timber Construction

- Major advantage
 - -Structural integrity of members
 - Small surface to mass ratio
 Harder to ignite
 More resistant to collapse
- No concealed spaces
 Stream penetration ability

Heavy Timber Construction

• Includes:

-Textile mills

-Factories

-Churches

Heavy Timber: Fire Spread Concerns

Structural Fire Load

- Massive amount of wood
- Retain integrity

Small surface to mass ratio

- May be soaked by years of process-
- related materials

• Oils / Greases / easily ignited fluids

Dust

- Increase ignitability

Heavy Timber: Fire Spread Concerns

Radiant Heat

- Exposure problem
- Has ignited buildings up to 1000' away
- Flying brand problems
- Beyond capability of most FD's
- Defensive strategy
 - Establish collapse zones
 Consider secondary collapse threat
 - Protect exposures

Heavy Timber: Fire Spread Concerns

- Hazardous Processes
 - Plastics
 - Flammable Liquids & Gases
 - -Hot fire production
 - Higher BTU production
 - -Heavy floor loads
 - -Heavy Roof Loads
 - Earlier collapse

Building Construction

Heavy Timber: Fire Spread Concerns

Renovations

- Condos / Museums / Retail
 - Lightweight construction
 - Drop Ceilings
 - Voids created where concealed spaces did not exist
 - Added weight to structure
 - May overtax old sprinkler system
 - Multi-tenant occupancy
 - Change in life hazard profile

Heavy Timber: Fire Spread Concerns

- Inadequate Sprinkler System
 - Lack of maintenance
 - Insufficient for hazard
 - Occupancy changes without fire protection upgrade
 - Current fire load greater than that for which system was originally designed

Heavy Timber: Structural Concerns

- Collapse rare in early stages
- Later stage collapse
- Floor collapse followed by wall collapseException:
 - Buildings which have had repeated fires
 - Years of rot and neglect
 - Renovation-created structural
 - compromise
 - Fire wall presence may limit damage

Heavy Timber: Structural Concerns

Steel Spreader Plates

- Tie opposite walls together • May be tied into timbers
- -Indicators:
 - Decorative stars
 - Circles / squares / diamonds

Heavy Timber: Structural Concerns

- Steel Spreader Plates
 - Unprotected steel rod

- Symmetrical pattern plates

- Built into original design of structure
 Arbitrary pattorn platos
- Arbitrary pattern plates
 Placed to support weakened wall
 - Exercise extreme caution
 - May cause change in strategy

BOTH WILL BE ADVERSELY AFFECTED BY THE HEAT OF A FIRE

Wood Frame Construction

- NFPA Class V
- All structural elements are wood
 Entire building combustible
 - Rarely higher than 3 or 4 stories

– Include

- Private dwellings
- Churches
- Tenements
 Row houses
- Mixed-Use Occupancies

Building Construction

Wood Frame Construction

- 5 Types:
 - -Braced frame
 - -Balloon Frame
 - Platform Frame
 - Truss Construction
 - Wooden I Beam Construction

Wood Frame: Fire Spread Concerns

• ALL wood frames:

- Unenclosed Stairways

- Path of least resistance for fire and smoke travel to upper floors — Trap occupants and FF's on upper floors
- Hose placement priority
- Reason for Vent, enter, search (VES)
 operations
- Multiple avenues of approach

Wood Frame: Fire Spread Concerns

• ALL wood frames:

- Combustible Exterior

Autoexposure

 Convected Heat

 Closely-spaced buildings

 Radiant Heat

 Combustible siding

 Asphalt (Gasoline) siding

-Must be kept wet

Wood Frame: Fire Spread Concerns

 ALL wood frames: Combustible Roof

Flying brands

- -May require Brand Control Group on leeward side of fire
- Dangerous working platform
 - -Platform
 - -Aerial Ladder
 - -Roof Ladder

Wood Frame: Fire Spread Concerns

- ALL contiguous wood frames:
 Attached cockloft potential
 Attached cellars potential
 - Must be investigated early
 - Combustible shafts • Totally enclosed
 - Partially enclosed

Wood Frame: Structural Concerns

- ALL wood frames:
 Structural additions create eccentric
 - load and increase chance for wall collapse
 - Eccentric loads create bending tendency on supporting member – Fire escapes
 - Lack of maintenance
 - Destruction of supporting wall
 - Overload

Wood Frame: Structural Concerns

• ALL wood frames:

- Veneer wall coverings

- Misleading size-up (Check sides & rear)
 Croote constraint land
- Create eccentric load
- Single thickness of masonry
 Decorative brick, stucco, or stone

Wood Frame: Structural Concerns

• ALL wood frames:

-Veneer wall coverings

Dependent on wall for stability
 Attached by unprotected metal
 "ties"

-Fire spread in space between veneer and supporting wall destroy ties

-Collapse hazard

Building Construction

Braced Frame

Usually at least 100 years old

- Walls are Non-bearing
 - Structural weight on vertical posts and horizontal girts • Wood beams 4" x 4" or 6" x 6"

 Mortise and tenon connection
 Proper joint connection is critical to stability

Braced Frame: Fire Spread Concerns

- Old, dried out wood – Reduced ignition temperature
- Fire attack on mortise and tenon joints create structural instability
- Buildings usually closelyspaced

Braced Frame: Structural Concerns

Failure point is usually mortise and tenon joint

- Point of connection

- Least amount of wood
- Wood dimension of lower floors same as upper floors
 - No compensation for added weight above
 - Greatest structural weight on ground floor

Braced Frame: Structural Concerns

- Fail without warning
 Inward-outward collapse
- Heavy fire on lower floor will cause overloaded structural supports to crack and fail at 1st floor/2nd floor connection
 - Lower floor falls outward
 - Upper floor(s) fall inward
 - May lean-over if unattached

Building Construction

Balloon Frame

- _____<u>^</u>
- All studs continuous for full height of building
- No inherent fire stopping between floors
- Stacked windows are reason for suspicion

Balloon Frame: Fire Spread Concerns

- Rapid fire extension from floor to floor via open exterior wall studs
 - Expect basement fire to spread to attic
 - Open floor joist channels promote horizontal spread under floor
 - Personnel-intensive
 - Smoky due to lack of oxygen in voids
 - Extensive and creative pre-control overhaul
 - Place lines in anticipation of fire spread

Balloon Frame: Structural Concerns

- Smaller vertical members (2" x 4") holding up larger horizontal members (floors / roof) [3' x 10"]
 - Non-bearing walls often fail in 90° collapse
 - Floors may be left intact and intensify radiant heat problem
 - Bearing wall failure usually causes
 complete failure
 - Roof and /or floor failure may cause wall failure and vice-versa

Building Construction

Platform Frame:

- All studs are one story in height
- Floors provide some inherent fire stopping
- Designed to confine fire to one floor
 Usually limited to 3 floors
 Each floor is a separate platform built
 - on top of the one below

Platform Frame: Fire Spread Concerns

- Utility pokethroughs negate the integrity of the platform design
 - Plumbing
 - Electrical
 - -HVAC ductwork
 - Soffits

Platform Frame: Structural Concerns

- Fail in similar ways to balloon frame
 - -Bearing wall destruction
 - Walls with windows fail more readily
 Floors will fail from the height of the
 - bearing wall failure
 - Floors may burn through and cause localized collapse

uilding Construction

TRUSS CONSTRUCTION

- As strong as its weakest link
- Failure of any part of the truss is likely to collapse entire truss
- Once truss is involved in fire:
 Withdrawal and roll call
 - Establish collapse zones
 - Switch to defensive strategy
 EARLY ID = KEY TO SAFETY

TRUSS CONSTRUCTION

Assess fire conditions

- Pre-flashover: Contents fire
 - Usually no structural compromise
 - Marginal interior operation
 - Recon / monitor roof, floor spaces, cockloft
- Post-flashover: structure involved
 Expect collapse
- Roof ventilation:
 - Conduct from aerial device

TRUSS CONSTRUCTION Lightweight Wood Truss

MAY FAIL IN AS LITTLE AS 5 MINS.

\$5 minutes of fire exposure, not 5 minutes after FD arrival

NO WARNING!!!

- 2" x 4" wood members
- Parallel Chord floor and flat roof
- Peaked roof

Condos / Townhouses

- Newer housing developments
- Renovations

TRUSS CONSTRUCTION Lightweight Wood Truss

- Concerns: Connection methods:
- Unprotected steel: Prone to failure
 - Sheet metal surface fastener
 - "Gusset plate" or "Gang Nail"
 - Penetrates only ¼ ½" into the wood
 Pulls free and curls up when exposed to heat
 - Rough handling at site or during transportation weakens prior to installation
 - May be insufficiently fastened
 - Moisture caused corrosion
 - Impact load failure

TRUSS CONSTRUCTION Lightweight Wood Truss

Concerns:

- Minimal dimension of wood
- 2" x 4' may be 1-1/2" x 3" or less
 Failure to compartmentalize
 - Open attic
 - Sheetrock only reaches ceiling
 <u>Pokethroughs</u>
- Open construction of truss
 - Each piece simultaneously exposed
 - Horizontal and vertical spreadAll trusses in area exposed at once

TRUSS CONSTRUCTION Composite Lightweight Truss

- Wood top and bottom chords
- Steel web members
 - Wood mortised out to fit stamped steel into top and bottom chord
 Pin connector
 - Wood mass compromised at mortise
 - Steel conducts heat into mortise
 - Early failure as in other lightweight trusses

TRUSS CONSTRUCTION Bowstring Truss

- Deadliest type of roof
- Humpback Roof Design

 May be hidden by parapet
 4 bearing walls
- Open truss area collects heat from fire below
- Spaced as much as 20' on center
 One truss failure = 40' wide opening
 Retreat perpendicular to trusses

TRUSS CONSTRUCTION Bowstring Truss

- Truss ends supported by side walls
- Front and rear walls support sloping hip rafters extending from front and rear truss sections
- Collapse without warning
 Roof collapse causes inward-outward
 collapse of end walls
 - Transfers roof load to sloping hip rafters in end walls

TRUSS CONSTRUCTION Strategic Considerations

- Early identification is the key to safe operations
- Recon of truss area critical

 Use man-made openings
 - Operate from aerial device
 No fire in truss
 - Reinforce marginal interior operation
 Continue to monitor truss area
 - Fire involves truss
 - Withdraw personnel
 - Pursue defensive strategy

TRUSS CONSTRUCTION Strategic Considerations

- Reports from Roof critical to strategic decision
- Beware of conflicting roof / interior reports
 - Interior reports minimal heat and smoke condition
 Roof reports heavy fire
- WITHDRAW IMMEDIATELY!!!

Wooden I-Beams

- Used in floors and roof construction
- 2" x 4" top and bottom chord
- Plywood or chipboard web - Adhesive material adds to fire load - Provides some lateral fire-stopping
- 5 minute collapse potential
- No warning

Hybrid Construction

- Makes use of more than one construction type
 - Walls & partitions are unprotected metal stud (Class 2) - Floors supported by steel truss
 - Plywood floors

 - Roof is wood, usually truss (Class 5)
- Very little fire resistance
 - Prone to early & progressive collapse
 - Preplan is crucial

Hybrid Construction

- Can be created by renovations or alterations
 - Heavy timber may be renovated to include lightweight materials
 - Extensive use of new technology / building methods
 - -Meets structural codes, but so do trusses (Any questions?)

Collapse Considerations

- Types of Wall Collapse
- Wood frame:
 - 90° angle
 - Full height of wall
 - Inward-outward
 - Usually braced frame
 - No warning- MOST DEADLY
 - Lean-over
 - Corner buildings

Building Construction

Collapse Considerations

- Types of Wall Collapse
- Masonry Wall Collapse
 - 90° angle
 - Wall separates at top
 - Inward-outward
 - Bowstring truss
 - Curtain fall
 - Veneer
 - Heavy Timber

Building Construction

Collapse Considerations

- Types of Floor Collapse
 - Tent Floor
 - -Pancake Collapse
 - -V Shape
 - –Lean To
 - Supported
 - Unsupported

Collapse Considerations

- Collapse Safety
 - Any collapse threat should cause an immediate re revaluation of the current strategy
 - Pre stablished evacuation signal
 Radio emergency transmission
 Apparatus air horn / siren

Building Construction

Collapse Considerations

- Collapse Safety
 - Strong Command presence
 Command and control
 - Roll Calls
 - Establishment of Collapse Zones
 - Vertical = at least height of facing wall
 Horizontal = Entire width of weakened
 - wall

 Consider secondary collapse
 - -May cause expansion of zones

Building Construction

Summary

- Heavy Timber Construction
- Wood Frame Construction
 - Braced Frame
 - Balloon Frame
 - Platform Frame
 - Lightweight Truss
 - Wooden I-Beam
- Bowstring Truss Construction

Summary

- Hybrid Construction
- Collapse Zones
 Vertical
 - -Horizontal
- Masonry Wall Collapse
- Wood Frame Wall Collapse
- Wood Floor Collapse

Building Construction

Conclusion

- Be a student of building construction
- Preplan buildings
- Utilize an information recall system
 - -Palest ink is better than the sharpest memory

Building Construction

Next Lesson

- Lesson 5: Engine Company Operations
- Reading Assignment:
 Fireground Strategies
 Ch. 2